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Abstract: We propose a method for estimating the stiffness of bio-specimens by measuring their
linear retardance properties under applied stress. For this purpose, we employ an epi-illumination
Mueller matrix microscope and show the procedures for its calibration. We provide experimental
results demonstrating how to apply Mueller matrix data to elastography, using chicken liver and
chicken heart as biological samples. Finally, we show how the histograms of linear retardance
images can be used to distinguish between specimens and quantify the discrimination accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The determination of tissue mechanical properties is of large interest in clinical applications for
the diagnosis and detection of many diseases, since these properties vary with the pathological
condition of the tissue. When external forces such as tension, compression, or shear are applied,
the stress and strain of a pathological tissue is different than healthy tissue. For example,
cancerous tumors are often stiffer than normal tissue [1].

Micro-elastography provides information on tissue micro-structure and on tissue behavior under
applied stress. It is relevant to diagnosis and identification of tissue disorders and disease-related
symptoms and thus can act as a method to distinguish between normal and diseased tissue.
Elastography techniques have been used by many research groups [2, 3] by employing ultrasonic
and MRI methods. Elastography has been combined with optical coherence tomography [4–6]
to determine mechanical behavior of tissue under a compressive load. The measurement is
qualitative and the nature of elastograms maps tissue strain with spatial resolution. The above
mentioned methods requires complex hardware, and measurement artifacts can be a problem if the
data and image processing are not done with great care. Polarization imaging provides additional
features such as structural, biochemical and functional information of the light interacting medium
compared to conventional intensity imaging methods and therefore can be helpful for clinical
applications. Recently, Buchta et al. [7] proposed a shearing-interferometry-based elastography
method for determining the elastic parameters and localized stiffness inhomogeneities of soft
tissue. He et al. [8] proposed a method to compare among different tissues by using frequency
distribution histograms of the Mueller matrix elements. Du et al. [9] show that by using Mueller
matrix polarimetry, characteristic features of cancerous tissues can be differentiated from normal
tissue.
Biological tissue is anisotropic where collagen fiber structure is present in tissue, such that

fibrous tissue can be differentiated from other tissue types using linear retardance measurement.
Since abnormal tissue shows different fiber structural properties than does normal tissue, linear
retardance thus can be used as an effective tool for diagnostic purposes [10–13]. Mueller matrix
imaging contains information of retardance, diattenuation, and depolarization allowing for a
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better understanding of polarization properties of sample and thus a Mueller matrix microscope
is capable of quantitative analysis of a tissue’s birefringence and its direction in the micro scale.
Epi-mode measurement is useful compared to transmission mode for measuring opaque samples
such as biological specimens.
The most commonly used instrument for Mueller matrix polarimetry is perhaps the dual

rotating retarder technique originally proposed by Azzam [14]. Arteaga et al. [15] introduced a
transmission mode Mueller matrix microscope using the dual rotating retarders methodology.
For elastography measurement, the specimen should have a thickness of the order of mm and in
that case, a transmission Mueller matrix microscope can not be used because of light penetration
and therefore it is required to build a Mueller matrix microscope in epi-illumination mode.
We introduce a epi-illumination Mueller matrix microscope instrument for the quantitative
discrimination of elastographic properties of tissue.
In the discussion below, we survey the measurement model for our epi-illumination Muller

matrix microscope system and explain the calibration method for it. In order to demonstrate
the effectiveness of our measurements, we record Mueller matrix images of a rubber sample
while applying different amounts of stress. After using the rubber sample to verify the accuracy
of measuring Young’s modulus using the Mueller matrix microscope system, we establish an
empirically determined linear relationship between the sample linear retardance in reflection and
the applied stress. This relationship is described by what we call the sample’s “stress-retardance
sensitivity coefficient” and by comparing the stress-retardance sensitivity coefficient of different
tissues, we show that it is possible to discriminate tissue types even when they appear same to the
eye.

2. Methodology and calibration of the instrument

Our Mueller matrix microscope is depicted in Fig. 1. The light source used in this experiment
is a halogen lamp (Ocean Optics HL-2000-HP) which is transmitted through an optical fiber
(Ocean optics, P1000-2-UV/VIS, 1000 µm dia). The light beam is collimated by a collimating
lens (Edmund Optics, 43-902, NA= 0.25) and then passed through a bandpass filter (Edmund
Optics, 65-098, 12.5 mm dia) having a spectral bandwidth 10 nm, centered at 550 nm. The
focal length of the collimating lens is 15.37 mm and the diameter of the collimated beam is 8
mm. The polarization state generator (PSG) is composed of a horizontal polarizer and a rotating
quarter wave plate (QWP). The polarization state analyzer (PSA) is similar to the PSG with
the components placed in reverse order. The polarizers are Glan Thompson type having 12
mm diameter with an extinction ratio greater than 100000:1 and the waveplates are zeroth-order
QWPs. The two retarders in the PSG and PSA are mounted independently with motors to rotate at
rotation speeds of θ(t) and 5θ(t) respectively. The beam splitter is a non-polarizing beam splitter
used to pass light from the PSG into the microscope objective lens. The microscope objective
is a plano infinity-corrected long working distance objective lens (Mitutoyo, 10X, NA=0.28).
Imaging is performed using a cooled CCD camera (Bitran BQ-86M, 1360×1024 pixels, 16 bits).

The exposure time of the camera can be varied depending on the requirement of themeasurement.
Dark current is measured before each measurement and is subtracted from the signals at each
pixels during measurement. Averaging of five measurements are performed to improve the signal
to noise ratio and to increase the precision of the measurement. Total thirty six images are taken
and then these images are used to determine the Mueller matrix elements of the sample. The
thirty six measurements are spread over a 180° rotation of the PSG. Without any calibration of
the system, the Mueller matrix elements can be found from the Fourier coefficients of the output
intensity and is given in detail in Ref. [16].

We demonstrate the calibration of our reflection-mode Mueller matrix polarimeter. Since the
retarders used in the proposed configuration are only approximately achromatic in the visible
wavelength range, working at different wavelengths requires recalibrating the retardance of the
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Fig. 1. Schematic diagram of experimental setup of epi-illumination Mueller matrix
microscope used for elastographic measurement. LP: linear polarizer, QWP: quarter wave
plate is used in the polarization state generator and polarization state analyzer. Rotation
angles of QWP1 and QWP2 are θ(t) and 5θ(t) respectively.

wave plates. Also, the main source of errors in a dual rotating retarder instrument is the azimuthal
error in the components. Goldstein et al. [17] proposed a calibration method for a transmission
configuration by taking air as a reference sample. In reflection mode, this is not feasible. Instead,
we take a reference measurement using a mirror as the sample, and from this calibrate the
retardance of the retarders and azimuth angles of the components. We also calibrate the effect
of the beam splitter in both reflected and transmission paths through the beam splitter, since it
causes an amount of linear retardance and diattenuation. Since the polarization effects due to the
microscope objective are very small, therefore they are ignored in the calibration process.

2.1. Calibration of retardance error of waveplates and azimuthal error of the compo-
nents

Let us define the linear retardance magnitude and fast axis orientation angle of the linear retarder
as δ and θ respectively. Let us consider retardance errors of the two retarders as, ε1 = δ1 − 90°,
ε2 = δ2 − 90°. If we write ε3 and ε4 are azimuthal errors of the retarders and ε5 is azimuthal error
of the analyzer, then the output Stokes vector at the camera can be written using Stokes-Mueller
calculus as

Sout =
[
S0 S1 S2 S3

]T
= P2(ε5)R2(ε2, 5θ + ε4)Mmirror R1(ε1, θ + ε3)P1(0°)Sin , (1)

where Sin is the input Stokes vector of the incident light, Pn(φ) be the Mueller matrix of the nth
polarizer having transmission axis oriented at an angle φ, and Rn(θ) be the Mueller matrix of the
nth linear retarder. The reference sample is taken as mirror at normal incidence whose Mueller
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matrix is given by

Mmirror =
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Using this theoretical model, the corresponding output intensity is Fourier transformed to
determine the Fourier coefficients an and bn. Therefore, the azimuthal errors of the components
can be expressed as
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and retardance errors can be explicitly written as

ε1 = sin−1
{

a12 cos(4ε4 − 2ε5) − a10 cos(4ε4 + 4ε3 − 2ε5)
a12 cos(4ε4 − 2ε5) + a10 cos(4ε4 + 4ε3 − 2ε5)

}
, (4a)

ε2 = sin−1
{

a12 cos(4ε3 + 2ε5) − a2 cos(4ε4 + 4ε3 − 2ε5)
a12 cos(4ε3 + 2ε5) + a2 cos(4ε4 + 4ε3 − 2ε5)

}
. (4b)

By using this calibration method, the azimuthal angles and retardance of the waveplates
are retrieved and then we adopt the equation given in Ref. [17] to retrieve the Mueller matrix
elements.

2.2. Calibration of the beam splitter

Although the beam splitter is considered as a non-polarizing element, it has linear retardance and
diattenuation which can cause artifacts in the measurement results of the experimental Mueller
matrix if not compensated-for. To remove the linear diattenuation and retardance effects due to
the beam splitter, calibration of beam splitter is also performed.

In the experimental procedure, the light first reflects from the beam splitter, then interacts and
reflects from the sample and finally transmits through the beam splitter. In the whole process,
the measured Mueller matrix (Mmeasured) is a multiplication of the Mueller matrix of the beam
splitter for reflection (MBSR), the Mueller matrix of the sample (MS), and the Mueller matrix of
the beam splitter due to transmission (MBST), and therefore can be written as

Mmeasured =MBST MS MBSR . (5)

Complete Mueller matrices of the beam splitter was measured using a commercial Mueller
matrix polarimeter (Axoscan) [18] in both reflection and transmission and are shown in Table
1. The AxoScan system measures polarization properties at a single point (not imaging) of the
sample and can measure in the visible to near infrared range (400-800 nm). The measurement
error in the Mueller matrix elements by the Axoscan system is 0.1% and the system has a precision
of 0.01% for 40 set of measurements at our working wavelength of 550 nm. In transmission
configuration, the measured linear retardance is 1.42° and diattenuation is 0.281 whereas in
reflection mode the beam splitter has a linear retardance of 2.36° and diattenuation of 0.270.
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Table 1. Mueller matrices of beam splitter in transmission and reflection mode.

Beam splitter Mueller matrix in transmission Beam splitter Mueller matrix in reflection

(MBST) ( MBSR)©«

1.000 0.281 0.001 0.000

0.293 0.953 −0.001 −0.005

−0.001 0.000 0.904 0.021

−0.005 0.012 −0.021 0.908

ª®®®®®®®¬

©«

1.000 0.270 0.008 0.001

0.281 0.900 0.026 0.008

−0.002 0.023 0.845 −0.033

−0.001 0.009 0.037 0.850

ª®®®®®®®¬
After determining the reflection and transmission Mueller matrices of the beam splitter, the
Mueller matrix of the sample can be retrieved by inverting the Mueller matrices:

MS =M−1
BST Mmeasured M−1

BSR . (6)

The measured Mueller matrix of the beam splitter is sensitive to the optical geometry of the
commercial polarimeter. However, the same geometry was used during measurement of the
beam splitter with the commercial polarimeter as with the Mueller matrix microscope.

3. Determination of stress-retardance sensitivity coefficient

We next show how the linear retardance values obtained from a sample’s Mueller matrix can
be used to estimate the sample’s stiffness. After passing through a birefringent material, the
two components of the electric field vector along the two principal stress directions experience
a different refractive index. Using the stress-optic law, the magnitude of linear retardance ∆
expressed in radians can be written as

∆ = 2π
ny − nx

λ
d

= 2πG
σy − σx

λ
d ,

(7)

where nx and ny are the refractive indices along the two principal directions, G is the stress optic
coefficient expressed in radians/unit pressure, σx and σy are the amount of stress applied along
the two principal axes expressed in Pa, d is the effective optical path length of light through the
sample, and λ is the wavelength of the light source. By applying stress in one principal direction
(σx = σ, σy = 0), Eq. (7) simplifies to:

∆ = 2πG σ d/λ . (8)

The strain ε can be calculated as the change in length (∆L) divided by the original length (L).
The applied stress σ and the produced strain ε are related to Young’s modulus E by

σ = E ε . (9)

If we measure the strain of a sample as a function of applied stress, we can fit a line to the data to
determine Young’s modulus for the material. By substituting Eq. (9) into Eq. (8), we obtain

∆ = 2πG
E d
λ

ε = R ε , (10)
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Fig. 2. (a) Measurement of the spatially resolved normalized Mueller matrix MS(x, y)
of a mirror at normal incidence. All of the Mueller matrix elements are normalized by
element m00. (b) The standard deviation images of the measured Mueller matrices after five
measurements. Each image contains 1360×1024 pixels.

where we define the “strain-optic modulus” R = 2πG E d/λ. From the slope of the retardance-
strain plot fitted from the same experiment but this time from the reflected Mueller matrix data,
we can also determine the value R. Since strain is dimensionless, R has the same units as ∆. By
writing a = λ/2πG d , we get

E = a R . (11)

We call the coefficient a the “stress-retardance sensitivity coefficient”. Since Young’s modulus E
is expressed in Pa and R is in radians, therefore the unit of a will be Pa/rad.

4. Measurement results and discussion

4.1. Instrument validation

In order to experimentally validate the Mueller matrix microscope instrument, we measure the
spatially resolved Mueller matrix of a mirror at normal incidence. The Mueller matrix element
images and element standard deviation images of the mirror are shown in Fig. 2. All of the
Mueller matrix elements are normalized by m00. Each standard deviation is obtained from a set
of five measurements. The mean measurement errors of the diagonal and nondiagonal elements
of the Mueller matrix elements of the mirror are less than 0.8% and 1.1% respectively.
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Fig. 3. Calculated diattenuation magnitude and orientation from the measured Mueller
matrix of a rotating polarizer.
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We next measured the Mueller matrix of a rotating Glan-Thompson polarizer. The Mueller
matrix is decomposed by the polar decomposition method [19] and the retrieved linear diattenua-
tion magnitude and orientation for the different orientation axes of the polarizer are shown in
Fig. 3. The value of linear diattenuation averaged across the face of the sample (circular region in
Fig. 3) is measured to be 1.00±0.01 i.e. a perfect polarizer to within the measurement precision
of our system. The ±0.01 error in linear diattenuation represents the spatial standard deviation.
The orientation of diattenuation follows the azimuthal axis of the linear polarizer and has an error
of less than 0.2°.
Next, a waveplate (λ/4 at 632.8 nm) is measured to quantify the instrument’s retardance

measurement accuracy at wavelength 550 nm. Figure 4 shows the linear retardance magnitude
and relative axis orientation measured while rotating the waveplate from 0° to 180°. By taking the
spatial average and spatial standard deviation across the face of the sample, the linear retardance
of the waveplate is measured as 105°±2.4°, independent of the rotation angle of the waveplate.
The estimated orientation of linear retardance follows the waveplate orientation to within 0.5° of
error.

4.2. Elastographic measurement

The mount depicted in Fig. 5 is used to measure the strain produced in a sample. Stress is applied
by attaching different weights to a pulley. One side of the sample is held fixed on the fixed stage
which is kept in place while the other side of the sample is attached to a sliding stage. The

Sample

Incident light

Weight used to

apply stress

Sliding stage
Fixed stage

(a) (b) (c)

Direction of stress

Fig. 5. Pictures of the biological samples: (a) chicken heart and (b) chicken liver. During
measurement, the samples were each cut in a rectangular shape of 10 mm×20 mm cross-
section and 1.2 mm thickness. (c) Diagram of mounting system to produce stress in the
sample. The samples are stressed horizontally in the laboratory reference frame.
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direction of the strain is perpendicular to the incident beam.
To validate the accuracy of the stress-strain measurement using this technique, we first

performed a measurement on a rubber material having a known Young’s modulus of 10.8 MPa.
For a given strain, the complete Mueller matrix was simultaneously recorded for the rubber
sample and the polar decomposition method used to retrieve the linear retardance. The spatial
average linear retardance for strains from 0.000 to 0.048 are shown in Fig. 6. Linear retardance
in the rubber arises due to stress birefringence for the applied stress produced in the sample.
To quantitatively evaluate linear retardance images (Fig. 6), the spatial histograms of linear
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Fig. 8. Stress and linear retardance of the rubber material as a function of the applied strain.

retardance and fitted Gaussians for different applied strain are shown in Fig. 7. The mean
value of retardance increases linearly with increasing strain (Fig. 8). Figure 8 also shows the
stress-strain measurement result. Fitting the measured stress-strain data to a straight line gives an
estimated Young’s modulus of 10.5±0.12 MPa. The ±0.12 range in Young’s modulus represents
the standard deviation after five measurements. The value of the stress-optic modulus R for
the rubber sample is determined as 220° using Eq. (10). We can estimate the stress-retardance
sensitivity coefficient a, after measuring the Young’s modulus E and stress-optic modulus R from
their ratio (Eq. (11)) as of 47.7.

Next, we perform measurement of biological tissues. Samples of raw chicken liver, raw chicken
heart, (shown in Fig. 5) and cured ham were each cut in a rectangular shape of 10 mm×20 mm
cross-section and 1.2 mm thickness using a long blade knife. We prepared the tissue in rectangular
shape rather than free form shape and then applied force in one direction, such that the deformation
in the tissue is approximately uniform over the sample and is confirmed by imaging four different
parts of the sample. To determine the stress-retardance sensitivity coefficients of chicken heart
and liver, we performed stress-strain and Mueller matrix measurements simultaneously by giving
an increasing amount of applied stress. When analyzing the Mueller matrix of birefringent turbid
media with Mie-sized scatterers acquired in reflection geometry, the Lu-Chipman decomposition
may suffer from limitations due to the assumptions required by this method. In this case, one can
make use of the extended polar decomposition method instead. [20]. Figure 9 shows the linear
retardance images of chicken liver and heart for different strain value. The mean values of linear
retardance are plotted with strain in Fig. 10. The non-zero retardance at zero strain is due to the
small amount of birefringence presence in the samples due to their fiber structure.

At lower values of applied stress, the measured strain and retardance increase linearly. Between
0.5 and 1.0 of strain, however there is a sudden change in behavior for chicken liver, where the
retardance-strain curve exhibits a break from its initial slope to a new lower slope. Above this
point, the retardance drops suddenly and then becomes more or less constant with applied strain.
This can happen due to the breaking of the internal fiber structure and tissue damage. We fit the
stress-strain data and linear retardance-strain data from the first four data points before when the
fiber structure breaks. Fitting the measured data to a straight line through the first four data points
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by least square fitting, we calculate Young’s modulus of chicken heart and liver as 0.73 MPa and
0.14 MPa respectively. Thus, chicken heart tissue is five times stiffer than chicken liver tissue.
Using Eq. (10), the value of the stress-optic modulus R for chicken heart and liver are

determined as 230° and 51° respectively. To confirm uniform strain over the sample, we also
measured Mueller matrix in four different parts of the chicken heart and liver. The spatial
histograms of the linear retardance in the four different portions of the sample almost matches
with each other and confirm that the stain is uniform over the sample.

After measuring the Young’s modulus E and stress-optic modulus R, we can estimate the
stress-retardance sensitivity coefficient a from their ratio (Eq. (11)) as of 3.2 and 2.7 kPa/° chicken
heart and liver respectively. While Fig. 10 gives the estimated value for the stress-optic modulus
R, computing R from material properties alone (i.e. Eq. (10)) requires knowing the “effective
optical depth” of the sample in reflection. This is not same as the sample thickness since the
light can not penetrate all the way through. In order to estimate d for our samples, we used a
microtome to slice the tissues in thicknesses of 5, 10, 15, and 20 µm and compared the retardance
measured from these thin slices to retardance measured on bulk samples. Since the 10 µm thin
slices gave results comparable to the bulk samples, we use d≈10 µm for the effective optical
depth.

We also measure the stress-strain properties and Mueller matrix image of a cured ham sample.
The linear retardance image is extracted from Mueller matrix image for different amount of strain.
As before, we get retardance images at different values of stress and fit the stress-strain data and
retardance-strain data up to the point where the tissue fibers show damage. The slope of the fitted
line gives the Young’s modulus of ham as 0.59 MPa [21]. Using the same fitting procedure, the
value of the stress-optic modulus R is measured to be 170°. From the Young’s modulus E and
stress-optic modulus R, the stress-retardance sensitivity coefficient a of ham is determined as 3.4
kPa/°.
In order to demonstrate how the stress-retardance sensitivity coefficient can be used to

discriminate between two different tissue types, we show the measured linear retardances for
chicken heart and liver at the same value of applied strain 0.2 (Fig. 11). From the fitted Gaussian
curves, we can see that chicken heart has a higher retardance than chicken liver for a fixed applied
stress. A standard choice for discriminating between the two samples is to draw a line where the
two curves intersect–in this case at 27.2°. All pixels to the left can be classified as liver tissue,
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Fig. 9. Measured linear retardance images after polar decomposition of measured Mueller
matrix images of chicken liver and chicken heart for different values of strain produced. All
the images are shown in the same scale of linear retardance from 0°-100°.
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Fig. 10. (a) Stress-strain plot (b) retardance-strain plot of chicken liver and chicken heart.

and all to the right as heart tissue, for which we can calculate a classifier specificity of 0.986 and
sensitivity of 0.977.
A comparison of different physical parameters in terms of Young’s modulus, the stress-optic

modulus, and the stress-retardance sensitivity coefficient of the samples used in the present study
is listed in Table 2. For the biological samples, it is evident from Table 2 that, the properties
E and R closely track one another , so that R can be used as a kind of proxy measurement for
E. However when the sample has a very different behavior, such as the case for rubber sample
versus all of the biological samples, then there is no clear connection between E and R. Then
the stress-retardance sensitivity coefficient a can be useful for discrimination between different
samples.
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Fig. 11. Spatial histograms and fitted Gaussian curves for the spatial distribution of linear
retardance of chicken heart and liver at strain of 0.2.
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Table 2. Comparison of Young’s modulus, stress-optic modulus, and stress-retardance
sensitivity coefficient for differentiation of the samples used in the present study.

Sample Young’s modulus Stress-optic modulus Stress-retardance

E (MPa) R (°) sensitivity coefficient a (kPa/°)

Rubber 10.5 220 47.7

Chicken heart 0.73 230 3.2

Ham 0.59 170 3.4

Chicken liver 0.14 51 2.7

5. Conclusion

Wehave demonstrated amethod to determine the elastographic parameters in terms of a stress-optic
modulus and a stress-retardance sensitivity coefficient for differentiation of biological samples.
An epi-illumination Mueller matrix microscope and its calibration method is demonstrated that
is useful for the measurement of opaque samples. Linear retardance images are retrieved from
the Mueller matrix elements and are shown for the biological samples including chicken liver
and chicken heart. Using the histogram of the linear retardance images, it is shown that we can
differentiate between different tissue structure. We quantitatively distinguished between different
biological tissues from the stress retardance sensitivity coefficient by correlating Mueller matrix
with the mechanical properties of the tissue.

While our technique provides for a means to measure thick biological samples, due to its
use of reflected light, rather than in thin slices for transmission, accurate quantification requires
calibration. Some tissue samples will allow for deeper transmission in this measurement geometry
than other samples will, but if their basic transmission and scattering properties are known a
priori, then it seems likely that a calibration method can be used to match retardance to stress in
each case. We believe that using Mueller matrix polarimetry technique and by applying strain
in the tissue, it is possible to distinguish between normal and affected region of the tissue and
therefore can be helpful for early detection of many diseases.
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